
EE 508

Lecture 28

Integrator Design

Current-Mode  Integrators

s-domain to z-domain mappings



How can the performance of an integrator be 

characterized and how can integrators be compared? 

Express AV(jω) as

where R(ω) and X(ω) are real and represent the real and imaginary parts of 

the denominator respectively
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Definition:  The Integrator Q factor is the ratio of the imaginary part of the 

denominator to the real part of the denominator
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Typically  most interested in QINT at the nominal unity gain frequency 

of the integrator

Review from last time



What are the integrator Q factors for other 

integrators that have been considered?
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Review from last time



Improving Integrator Performance:

1. Compensate Integrator

2. Use better integrators

3. Use phase-lead and phase/lag pairs

• These methods all provide some improvements in integrator performance 

• But both magnitude and phase of an integrator are important so focusing only 

on integrator Q factor only may only improve performance to a certain level

• In higher-order integrator-based filters, the linearity in 1/ω of the integrator 

gain is also important.  The integrator magnitude and Q factor at ω0 ignore 

the frequency nonlinearity that may occur in the 1/ω dependence

• There is little in the literature on improving the performance of integrated 

integrators within a basic class.   At high frequencies where the active device 

performance degrades, particularly in finer-feature processes, there may be 

some benefits that can be derived from architectural modifications along the 

line of those discussed in this lecture

Review from last time



Integrator Types
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Selected Current Mode, Transresistance Mode, and Transconductance Mode Integrators



Current-Mode Filters
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Basic Concepts of Benefits of Current-Mode Filters:

• Large voltage swings difficult to maintain in integrated processes because 

of linearity concerns

• Large voltage swings slow a circuit down because of time required to 

charge capacitors

• Voltage swings can be very small when currents change

• Current swings are not inherently limited in integrated circuits (only voltage 

swings)

• With low voltage swings, current-mode circuits should dissipate little power



Current-Mode Filters
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Concept of Current-Mode Filters is Somewhat Recent: 

Key paper that generated interest in current-mode filters  (ISCAS 1989):

This paper is one of the most significant contributions that has ever come from ISCAS

Oct 20 2020



Current-Mode Filters



Current-Mode Filters
Advanced Search for “current-mode” and “filters”

1872-1987 – total of 8 references Search done on Nov 20, 2020

133

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
U

M
B

E
R

 O
F

 P
A

P
E

R
S

YEARS

Histogram for 2-year intervals

Most recent is 2019-2019



Current-Mode Filters

• Steady growth in research in the area since 1990 and 

publication rate is growing with time !!
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Search done on Nov 20, 2020

• And growth is MUCH bigger outside of IEEE (e.g. Scholar)



Current-Mode Filters

1 Introduction

Current-mode circuits have been proven to offer advantages over their 

voltage-mode counterparts [1, 2]. They possess wider bandwidth, greater 

linearity and wider dynamic range. Since the dynamic range of the 

analogue circuits using low-voltage power supplies will be low, this 

problem can be solved by employing current-mode operation.

Proc. IEE Dec 2006:

1. INTRODUCTION

It is well known that current-mode circuits have been receiving 

significant attention owing to its advantage over the voltage-mode 

counterpart, particularly for higher frequency of operation and 

simpler filtering structure [1].

The Conventional Wisdom:

Proc. SICE-ICASE, Oct. 2006 



Current-Mode Filters

JSC April 1998:

The Conventional Wisdom:

CAS  June  1992 

“Current-mode signal processing is a very attractive approach due to the 

simplicity in implementing operations such as … and the potential to 

operate at higher signal bandwidths than their voltage mode analogues” 

…  “Some voltage-mode filter architectures using transconductance 

amplifiers and capacitors (TAC) have the drawback that  …”

“… current-mode functions exhibit higher frequency potential, simpler 

architectures, and lower supply voltage capabilities than their voltage-

mode counterparts.” 



Current-Mode Filters

ISCAS 1993:

The Conventional Wisdom:

“In this paper we propose a fully balanced high frequency current-

mode integrator for low voltage high frequency filters.  Our use of the 

term current mode comes from the use of current amplifiers as the 

basic building block for signal processing circuits.  This fully 

differential integrator offers significant improvement even over 

recently introduced circuit with respect to accuracy, high frequency 

response, linearity and power supply requirements.  Furthermore, it is 

well suited to standard digital based CMOS processes.”



Current-Mode Filters

The Conventional Wisdom:

Two key publications where benefits of the current-mode circuits are often 

referenced:

“To make greatest use of the available transistor bandwidth fT , and operate at low 

voltage supply levels, it has become apparent that analogue signal processing 

can greatly benefit from processing current signals rather than voltage signals.  

Besides this, it is well known by electronic circuit designers that the mathematical 

operations of adding, subtracting or multiplying signals represented by currents 

are simpler to perform than when they are represented by voltages. This also 

means that the resulting circuits are simpler and require less silicon area.”

Search Nov 20, 2020



Current-Mode Filters

The Conventional Wisdom:

Two key publications where benefits of the current-mode circuits are often 

referenced:

“The use of current rather than voltage as the active parameter can result in higher 

usable gain, accuracy and bandwidth due to reduced voltage excursion at sensitive 

nodes. A current-mode approach is not just restricted to current processing, but 

also offers certain important advantages when interfaced to voltage-mode circuits.”

Search Nov 11, 2016
Search Nov 20, 2020



Current-Mode Filters

– Current-Mode circuits operate at higher-

frequencies than voltage-mode counterparts

– Current-Mode circuits operate at lower supply 

voltages and lower power levels than voltage-

mode counterparts

– Current-Mode circuits are simpler than 

voltage-mode counterparts

– Current-Mode circuits offer better linearity 

than voltage-mode counterparts

The Conventional Wisdom:

This represents four really significant benefits of 

current-mode circuits!



Some Current-Mode Integrators
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• Summing inputs really easy to obtain

• Loss is easy to add

• Same component count as voltage-mode integrators

• Some argue that since only interested in currents, can operate at lower voltages
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Some Current-Mode Integrators

Current-Mode Inverting Amplifier
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Some Current-Mode Integrators
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Inverting
Noninverting

• Summing inputs really easy to obtain

• Loss is easy to add

• Same component count as voltage-mode integrators

• Many argue that since only interested in currents, can operate at lower voltages

and higher frequencies
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Some Current-Mode Integrators
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Inverting Noninverting

• Summing inputs really easy to obtain

• Loss is easy to add

• Same component count as voltage-mode integrators

• Many argue that since only interested in currents, can operate at lower voltages

and higher frequencies

CIIN
IOUT

IB1

M
IB1 IB2

C
IIN

IOUT



Some Current-Mode Integrators
Switched-C
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Inverting

• Noninverting input easy to obtain

• Summing inputs really easy to obtain

• Loss is easy to add

• Stray insensitive structures readily available

• Less component count than voltage-mode integrators because summing input 

requires no additional inputs

• SC current-mode integrators have not received much attention in the literature 

(likely because few have observed the equivalence noted above)
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Current-Mode Integrators

The other basic types of voltage-mode integrators also 

have current-mode counterparts

• Switched-resistor

• MOSFET-C

• “Other”
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Current-Mode Two Integrator 

Loop

RARQ R

IOUT

IIN
C

RA

C R RL

• Straightforward implementation of the two-integrator loop

• Simple structure

CM Lossy Integrator CM Integrator CM Amplifier



Current-Mode Two Integrator 

Loop
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An Observation:
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Current-Mode Two Integrator Loop
RARQ R

IOUT

IIN
C

RA

C R RL

An Observation:

RARQ R

IOUT

IIN
C

RA

C R RL

This circuit is identical to another one with two voltage-mode integrators and 

a voltage-mode amplifier !

VM Integrator VM Amplifier

VM Integrator VM Amplifier

VM Integrator



This ambiguity can be attributed to a casual, and often inappropriate, 

appeal to the term in publications,at times with insufficient regard for 

foundations developed decades ago, referencing instead recent and 

closely similar work. Its colloquial application implies the use of currents 

as signals, invariably with a tacit claim to a degree of novelty, 

announcing a different, and in some (unstated and unclear) way, 

advantageous implementation of a function formerly realized using 

other techniques.



What is a current-mode circuit or a current-mode device?

R

I1

R
V1

Is the resistor a current-mode device?

Some authors say a current-mode circuit processes signals in the current 

domain



Observation

• Many papers have appeared that tout the 
performance advantages of current-mode circuits

• In all of the current-mode papers that this 
instructor has seen, no attempt is made to 
provide a quantitative comparison of the key 
performance features of current-mode circuits 
with voltage-mode counterparts

• All justifications of the advantages of the current-
mode circuits this instructor has seen are based 
upon qualitative statements



Observations (cont.)

• It appears easy to get papers published that have the 
term “current-mode” in the title

• Over 1700 papers have been published in IEEE forums 
alone !

• Some of the “current-mode” filters published perform 
better than other “voltage-mode” filters that have been 
published

• We are still waiting for even one author to quantitatively 
show that current-mode filters offer even one of the 
claimed four advantages over their voltage-mode 
counterparts

Will return to a discussion of Current-Mode filters later



Switched-Current Filters

Basic idea introduced by Hughes and Bird at ISCAS 1989

Technique introduced directly in the z-domain



Switched-Current Filters
Basic idea introduced by Hughes and Bird at ISCAS 1989

VDD
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If Φ1 is a periodic signal and if IIN is also 

appropriately clocked,  the input/output 

currents of this circuit can be represented 

with the difference equation

   OUT INI nT  = AI nT-T

“Gain” A  is that of a current mirror

A can be accurately controlled

Circuit is small and very fast

This switched mirror becomes a delay element

Concept can be extended to implement arbitrary 

difference equation

Difference equation characterizes filter H(z)

Need only current mirrors and switches

Truly a “current-mode” circuit



Switched-Current Filters
Basic idea introduced by Hughes and Bird at ISCAS 1989

VDD

IIN

IOUT

φ1

M1 M2

CP1: :A

   OUT INI nT  = AI nT-T

Potential for accuracy of a SC circuit at both 

low and high frequencies but without the Op 

Amp and large C ratios

Cp is parasitic gate capacitance on M2

Very low power dissipation

A completely new approach to designing filters 

that offers potential for overcoming most of the 

problems plaguing filter designers for decades !

Potential to operate at very low voltages

Neither capacitor or resistor values needed to 

do filtering!

Before developing Switch-Current concept, need to review background 

information in s to z domain transformations



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?

For a given T(s) would like to obtain a function H(z) or for a given H(z) would like 

to obtain a T(s) that preserves the magnitude and phase response

    jωTs=jω z=e
T s H z

Mathematically, would like to obtain the relationship:



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?

    jωTs=jω z=e
T s H z

    sTz=e
T s H z

want:

equivalently, want:

But if this were to happen, T(s) would not be a rational fraction in s with real coeff.

Thus, it is impossible to obtain this mapping between T(s) and H(z)



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?
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Termed the Forward Euler transformation

If can’t achieve this goal, would like to map imaginary axis to unit circle and map 

stable filters to stable filters



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?

z -1
s = 

T
Forward Euler transformation

• Doesn’t map imaginary axis in s-plane to unit circle in z-plane

• Doesn’t guarantee stable filter will map to stable filter

• But mapping may give stable filter with good frequency 

response



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?

consider: sTz e
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Case 2:

Termed the Backward Euler transformation
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s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?

Backward Euler transformation

1 z-1
 s = 

T z

 
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• Doesn’t map imaginary axis in s-plane to unit circle in z-plane

• Does guarantee stable filter will map to stable filter



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?
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Case 3:

Termed the Bilinear z transformation1

2 z-1
 s = 

T z




solving for s, obtain



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?

Bilinear z transformation1

2 z-1
 s = 

T z




• Maps imaginary axis in s-plane to unit circle in z-plane

(preserves shape, distorts frequency axis)

• Does guarantee stable filter will map to stable filter

• Bilinear z transformation is widely used



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?
consider:
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Three Popular Transformations



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?

• Transformations of standard approximations in s-domain are the  

corresponding transformations in the z-domain

• Transformations are not unique

• Transformations cause warping of the imaginary axis and may  

cause change in basic shape 

• Transformations do not necessarily guarantee stability

• These transformations preserve order
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Three Popular Transformations



z-domain integrators
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Some z-domain integrators
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Corresponding difference equations:



z-domain lossy integrators
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Some z-domain lossy integrators

       

       

        

1

1

1 1
2 2

OUT 0 IN OUT

OUT 0 IN OUT

0
OUT IN IN OUT

V nT+T TI V nT T V nT Forward Euler

T V nT+T I TV nT+T +V nT Backward Euler

TIT T
V nT+T V nT+T V nT + V nT Bilinear z

2





 

  

 

   
      

   

Corresponding difference equations:



z-domain lossy integrators

XIN XOUT T s

XIN XOUT H z

?
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Some z-domain lossy integrators
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Corresponding difference equations:
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Form



Stay Safe and Stay Healthy !



End of Lecture 28


